Rethinking Atrous Convolution for Semantic Image Segmentation

LIANG-CHIEH CHEN, GEORGE PAPANDREOU, FLORIAN SCHROFF, HARTWIG ADAM

Sivan Doveh Jenny Zukerman Deep learning seminar 2017/18

Agenda

- Semantic segmentation
 Main idea of DeepLab
 DeepLabV1
- DeepLabV2
- DeepLabV3

Semantic Segmentation

Semantic Segmentation

- Semantic segmentation is understanding an image at pixel level i.e, we want to assign each pixel in the image an object class
- Partitioning an image into regions of meaningful objects.

Assign an object category label.

Semantic Segmentation

Why semantic segmentation?

- Autonomous driving
- Medical purposes
- ▶ We will focus on 3 papers:
 - DeepLabV1
 - DeepLabV2
 - DeepLabV3

semantic segmentation

DeepLabV1 & DeepLabV2

Use DCNN for classification to generate a rough prediction of segmentation (smooth, blurry heat map)

Refine prediction with conditional random field (CRF)

<section-header>

What happens in standard DCNN?

- Striding-Smaller output size
- Pooling-Invariance to small translations of the input
- DeepLab solution
 - Atrous convolution
 - CRFs (Conditional Random Fields)

DCNN – Atrous (Holes)

- Remove the last 2 pooling layers.
- Up-sample the original filter by a factor of the strides (rate = 2)
- > Standard convolution \rightarrow responses at only 1/4 of the image positions.

DCNN – Atrous (Holes)

 \blacktriangleright Small field-of-view \rightarrow accurate localization

- \blacktriangleright Large field-of-view \rightarrow context assimilation
- Effective filter size increases

Both the number of filter parameters and the number of operations per position stay constant

DCNN – Atrous (Holes)

The authors found a good efficiency/accuracy trade-off, using atrous convolution to increase by a factor of 4 the density of computed feature maps, followed by bilinear interpolation (factor 8)

the proposed approach converts image classification networks into dense feature extractors without requiring learning any extra parameters

Atrous (Holes)-Some Results

Kernel	Rate	FOV	Params	Speed	bef/aft CRF
7×7	4	224	134.3M	1.44	64.38 / 67.64
4×4	4	128	65.1M	2.90	59.80 / 63.74
4×4	8	224	65.1M	2.90	63.41 / 67.14
3×3	12	224	20.5M	4.84	62.25 / 67.64

Conditional Random Field (CRF)

► DCNN trade-off: Classification accuracy ↔ Localization accuracy

- DCNN score maps successfully predict classification and rough position.
- Less effective for exact outline.

Conditional Random Field (CRF)

CRF tries to model the relationship between pixels:

- Nearby pixels more likely to have same label
- CRF takes into account the label assignment probability at a pixel
- Refine results by iterations

DeepLabV1

- DeepLab v1 is constructed by modifying VGG-16
- Fully connected layers of VGG-16 are converted to convolutional layers
- Subsampling is skipped after last two max-pooling layers
- Convolutional filters in the layers that follow pooling are modified to atrous
- Model weights of Imagenet-pretrained VGG-16 network are finetuned

DeepLabV1 visualization

DeepLabV2

Improvements compared to DeepLabV1:

- Better segmentation of objects at multiple scales (using ASPP)
- Adapting ResNet image classification DCNN
- Learning rate policy

Atrous Spatial Pyramid Pooling (ASPP)

- Challenge: existence of objects at multiple scales
- Computationally efficient scheme of resampling a given feature layer at multiple rates prior to convolution
- Using multiple parallel atrous convolutional layers with different sampling rates

Atrous Spatial Pyramid Pooling (ASPP)

The features extracted for each sampling rate are further processed in separate branches and fused to generate the final result

DeepLabV2 Visualization

DeepLabV1 & DeepLabV2

Advantages:

- Speed: By virtue of the 'atrous' algorithm, dense DCNN operates at 8 fps, while fully-connected CRF requires 0.5 second
- Accuracy: state-of-the-art results achieved on several state-of-art datasets
- Simplicity: the system is composed of a cascade of two fairly wellestablished modules, DCNNs and CRFs

DeepLabV3

Changes compared to DeepLabV1 & DeepabV2:

- The proposed framework is general and could be applied to any network
- Several copies of the last ResNet block are duplicated, and arranged in cascade
- Batch normalization is included within ASPP
- CRF is not used

Inside ResNet Block

Duplicate several copies the last ResNet block (Block 4) and arrange in cascade

- In the proposed model, blocks 5-7 are duplicates of block 4
- Three convolutions in each block
- Last convolution contains stride 2 except the one in last block

In order to maintain original image size, convolutions are replaced with atrous convolutions with rates that differ from each other with factor 2

DeepLabV3 - ASPP

Batch normalization is included within ASPP

- As the sampling rate becomes larger, number of valid filter weights becomes smaller
- Global average pooling on last feature map of the model

DeepLabV3 - ASPP

Improved ASPP consists:

- One 1x1 convolution and three 3x3 convolutions with (6,12,18) rates all with 256 filters and batch normalization
- image-level features (global average pooling)

Resulting features from all branches are concatenated and pass through 1x1 convolution

DeepLabV3 - Results

Best result includes:

- ► ASPP
- Output stride of 8
- Flip and rescale augmentation

Outperforms DeepLabV2 (77.69%)

Method	OS=16	OS=8	MS	Flip	mIOU
MG(1, 2, 4) +	\checkmark				77.21
ASPP(6, 12, 18) +		\checkmark			78.51
Image Pooling		\checkmark	\checkmark		79.45
		\checkmark	\checkmark	\checkmark	79.77
		1	1	1	79.77

DeepLabV3 Visualization

Questions?

