MySQL实战45讲精华

01 一条SQL查询语句是如何执行的

https://castile.github.io/2021/07/23/mysql%E8%AF%AD%E5%8F%A5%E6%89%A7%E8%A1%8C%E8%BF%87%E7%A8%8B/

02 日志系统:一条SQL更新语句是如何执行的

更新语句:update T set c=c+1 where ID=2;

redo log

redo log使用WAL技术(Write-Ahead Logging),也就是先写日志再写磁盘。 具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做

write pos 是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。

redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe

binlog

与redo log的区别:

  1. redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。
  2. redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
  3. redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

更新语句执行流程图:

注意,这里使用了两阶段提交。是因为要保证 数据库的状态和用它的日志恢复出来的库的一致。

03 事务隔离

隔离性与隔离级别

ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性)。

SQL 标准的事务隔离级别包括: 读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。

  • 读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
  • 读提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
  • 可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
  • 串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

事务隔离的实现

在 MySQL 中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。

假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志里面就会有类似下面的记录。

当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。

当没有事务再需要用到这些回滚日志时,回滚日志会被删除,因此尽量不要使用长事务。 由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间

查询事务

可以在 information_schema 库的 innodb_trx 这个表中查询长事务,比如下面这个语句,用于查找持续时间超过 60s 的事务。

1
select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60

如何避免长事务对业务的影响?

首先,从应用开发端来看:

  1. 确认是否使用了 set autocommit=0。这个确认工作可以在测试环境中开展,把 MySQL 的 general_log 开起来,然后随便跑一个业务逻辑,通过 general_log 的日志来确认。一般框架如果会设置这个值,也就会提供参数来控制行为,你的目标就是把它改成 1。
  2. 确认是否有不必要的只读事务。有些框架会习惯不管什么语句先用 begin/commit 框起来。我见过有些是业务并没有这个需要,但是也把好几个 select 语句放到了事务中。这种只读事务可以去掉。
  3. 业务连接数据库的时候,根据业务本身的预估,通过 SET MAX_EXECUTION_TIME 命令,来控制每个语句执行的最长时间,避免单个语句意外执行太长时间。

其次,从数据库端来看:

  1. 监控 information_schema.Innodb_trx 表,设置长事务阈值,超过就报警 / 或者 kill;
  2. Percona 的 pt-kill 这个工具不错,推荐使用;
  3. 在业务功能测试阶段要求输出所有的 general_log,分析日志行为提前发现问题;
  4. 如果使用的是 MySQL 5.6 或者更新版本,把 innodb_undo_tablespaces 设置成 2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。

04 深入浅出索引(上)

索引的出现其实就是为了提高数据查询的效率,就像书的目录一样

索引的常见模型

常见的有哈希表、有序数组和搜索树。

  • 哈希索引: 通过hash函数计算key所在的位置从而找到value,冲突后后面挂了一条链表。 哈希表这种结构适用于只有等值查询的场景 , 区间查询需要遍历全部,查询很慢。

  • 有序数组: 有序数组在等值查询和范围查询场景中的性能就都非常优秀 , 但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。 所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

  • 二叉搜索树 : O(log(N)) 的查询复杂度 , 新的时间复杂度也是 O(log(N))。

InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表

nnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的, 每一个索引在 InnoDB 里面对应一棵 B+ 树。 B+ 树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数

建表语句:

1
2
3
4
5
create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),

根据叶子节点的内容,索引类型分为主键索引和非主键索引

  • 主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。

  • 非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)

基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引如何维护

插入数据的时候就需要维护索引B+树,可能会涉及到页分裂、合并操作。

*哪些场景下应该使用自增主键,而哪些场景下不应该?

自增主键: 插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值; 每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂

有的 业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

除了考虑性能外,我们还可以从存储空间的角度来看, 主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小

“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

05 深入浅出索引(下)

语句:

1
2
3
4
5
6
7
8
create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;

insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

执行select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?

  1. 在 k 索引树上找到 k=3 的记录,取得 ID = 300;
  2. 再到 ID 索引树查到 ID=300 对应的 R3;
  3. 在 k 索引树取下一个值 k=5,取得 ID=500;
  4. 再回到 ID 索引树查到 ID=500 对应的 R4;
  5. 在 k 索引树取下一个值 k=6,不满足条件,循环结束。

可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)。

覆盖索引

如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

最左前缀原则

B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

用(name,age)这个联合索引来分析。 索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到 ID4,然后向后遍历得到所有需要的结果.

如果你要查的是所有名字第一个字是“张”的人,你的 SQL 语句的条件是”where name like ‘张 %’”。这时,你也能够用上这个索引,查找到第一个符合条件的记录是 ID3,然后向后遍历,直到不满足条件为止

这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。

在建立联合索引的时候,如何安排索引内的字段顺序?

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

索引下推

最左前缀可以用于在索引中定位记录,那些不符合最左前缀的部分,会怎么样呢?

市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”。那么,SQL 语句是这么写的:

1
select * from tuser where name like '张 %' and age=10 and ismale=1;

搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3, 后面只能从ID3开始回表操作,找出数据行再比较字段值。

在 MySQL 5.6 之前,只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值。

而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次

06 全局锁和表锁

根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类

全局锁

全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都 select 出来存成文本。

全库备份的方式

1、 Flush tables with read lock (FTWRL)

2、使用可重复读的事务隔离级别。 逻辑备份工具是 mysqldump。 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。 但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎。

3、 全库只读,为什么不使用 set global readonly=true 的方式呢?但是建议使用FTWRL,原因如下:

  • 一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。
  • 二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。 可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。

另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。

当要对表做结构变更操作的时候,加 MDL 写锁。

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。

如何安全地给小表加字段?

1、 我们要解决长事务,事务不提交,就会一直占着 MDL 锁。 如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。

如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?

在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

1
2
ALTER TABLE tbl_name NOWAIT add column ...
ALTER TABLE tbl_name WAIT N add column ...

07 行锁功过:怎么减少行锁对性能的影响?

行锁就是针对数据表中行记录的锁。这很好理解,比如事务 A 更新了一行,而这时候事务 B 也要更新同一行,则必须等事务 A 的操作完成后才能进行更新。

InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。 因此, 如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。

事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。默认是50s

  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

那种好用呢?

如果采用第一种,使用默认值的话,出现了死锁要等待50s才能超时退出,对于在线服务来说是无法接受的。但是如果值设置成1s,太短,会出现误伤。

采用第二种的话,如果客户端并发更新1000次,死锁检查就要执行100w次(每个线程都需要循环判断1000次,所以是10的6次方),那么死锁检测就需要大量的cpu, 你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。

解决方法:

1、 确保这个业务一定不会出现死锁,可以临时把死锁检测关掉 : innodb_deadlock_detect = off

2、 控制并发度 : 对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。

3、 冗余行设计: 减少冲突概率,减少锁等待次数,也就减少了死锁检测的CPU消耗。

如果你要删除一个表里面的前 10000 行数据,有以下三种方法可以做到:

  • 第一种,直接执行 delete from T limit 10000;
  • 第二种,在一个连接中循环执行 20 次 delete from T limit 500;
  • 第三种,在 20 个连接中同时执行 delete from T limit 500。

你会选择哪一种方法呢?为什么呢?

第二种好一点。

第一种方式: 单个语句占用时间长,锁的时间也比较长;而且大事务还会导致主从延迟。

第三种方式 : 会人为造成锁冲突

08 事务到底是隔离的还是不隔离的?

“快照”在 MVCC 里是怎么工作的?

可重复读隔离级别: 一个事务在启动的时候看到的数据,在整个事务过程中看到的数据是一致的。

在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的

快照的实现

每个事务有一个唯一的事务 ID,叫作 transaction id,且是严格递增的。

每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。也就是说数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。

虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。

三个虚线箭头,就是 undo log(回滚日志);而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来。

InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。

数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。 这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。

而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。

对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

  1. 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
  2. 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
  3. 如果落在黄色部分,那就包括两种情况:
    • a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;
    • b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。

InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。

事务的可重复读的能力是怎么实现的

可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。

而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:

  • 在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;
  • 在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

举例说明

1
2
3
4
5
6
mysql> CREATE TABLE `t` (
`id` int(11) NOT NULL,
`k` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, k) values(1,1),(2,2);

可重复读隔离级别下

这里,我们不妨做如下假设:

  1. 事务 A 开始前,系统里面只有一个活跃事务 ID 是 99;
  2. 事务 A、B、C 的版本号分别是 100、101、102,且当前系统里只有这四个事务;
  3. 三个事务开始前,(1,1)这一行数据的 row trx_id 是 90。

这样,事务 A 的视图数组就是 [99,100], 事务 B 的视图数组是 [99,100,101], 事务 C 的视图数组是 [99,100,101,102]。

事务 A 查询语句的读数据流程是这样的:

  • 找到 (1,3) 的时候,判断出 row trx_id=101,比高水位大,处于红色区域,不可见;
  • 接着,找到上一个历史版本,一看 row trx_id=102,比高水位大,处于红色区域,不可见;
  • 再往前找,终于找到了(1,1),它的 row trx_id=90,比低水位小,处于绿色区域,可见。

总结就是:一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

  1. 版本未提交,不可见;
  2. 版本已提交,但是是在视图创建后提交的,不可见;
  3. 版本已提交,而且是在视图创建前提交的,可见。

更新逻辑

用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。

因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。

所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是 101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3。

两阶段锁

事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢? 更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。

事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读。

本地验证结果也符合预期:

读提交隔离级别下的情况

在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?

在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。所以,在读提交隔离级别下,这个用法就没意义了,等效于普通的 start transaction。

事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:

  • (1,3) 还没提交,属于情况 1,不可见;
  • (1,2) 提交了,属于情况 3,可见。

所以,这时候事务 A 查询语句返回的是 k=2。

显然地,事务 B 查询结果 k=3。

09 普通索引和唯一索引,应该怎么选择?

假设有以下索引组织结构:

从这两种索引对查询语句和更新语句的性能影响来进行分析

查询过程

执行查询的语句是 select id from T where k=5。这个查询语句在索引树上查找的过程,先是通过 B+ 树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。

  • 对于普通索引来说,查找到满足条件的第一个记录 (5,500) 后,需要查找下一个记录,直到碰到第一个不满足 k=5 条件的记录。
  • 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。

这个不同带来的性能差距会有多少呢?答案是,微乎其微。 因为 InnoDB 的数据是按数据页为单位来读写的。也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。

更新过程

当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InooDB 会将这些更新操作缓存在change buffer 中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。

虽然名字叫作change buffer,实际上它是可以持久化的数据。也就是说,change buffer在内存中有拷贝,也会被写入到磁盘上

change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge

merge的时机:

1、 访问这个数据页

2、数据库正常关闭时

什么条件下可以使用 change buffer

对于唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束,这样就必须要将数据页读入内存中才能判断,这就没必要使用change buffer

实际上也只有普通索引可以使用。

change buffer 用的是 buffer pool里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodb_change_buffer_max_size来动态设置。这个参数设置为 25的时候,表示 change buffer 的大小最多只能占用buffer pool 的 25%。

如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB 的处理流程是怎样的。

  • 这个记录要更新的目标页在内存中
  • 对于唯一索引来说,找到 3 和 5 之间的位置,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,找到 3 和 5 之间的位置,插入这个值,语句执行结束。

普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的 CPU 时间

  • 这个记录要更新的目标页不在内存中
  • 对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,则是将更新记录在 change buffer,语句执行就结束了。

将数据从磁盘读入内存涉及随机 IO 的访问,是数据库里面成本最高的操作之一。change buffer 因为减少了随机磁盘访问,所以对更新性能的提升是会很明显的。

change buffer 的使用场景

change buffer 只限于用在普通索引的场景下,而不适用于唯一索引。

普通索引的所有场景,使用` change buffer 都可以起到加速作用吗?

因为 merge 的时候是真正进行数据更新的时刻,而 change buffer的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做 merge 之前change buffer记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。

1、 对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时 change buffer的使用效果最好。这种业务模型常见的就是账单类、日志类的系统。

2、假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在 change buffer,但之后由于马上要访问这个数据页,会立即触发 merge 过程。这样随机访问 IO 的次数不会减少,反而增加了change buffer的维护代价。所以,对于这种业务模式来说,change buffer 反而起到了副作用。

索引选择和实践

1、 查询上无差别,考虑更新性能选择普通索引

2、数据量大的表更新,选择普通索引

3、机械硬盘时,尽量使用普通索引,然后把 change buffer 尽量开大

change buffer 和 redo log

1
insert into t(id,k) values(id1,k1),(id2,k2);

我们假设当前 k 索引树的状态,查找到位置后,k1 所在的数据页在内存 (InnoDB buffer pool) 中,k2 所在的数据页不在内存中。如图所示是带 change buffer 的更新状态图。

它涉及了四个部分:内存、redo log(ib_log_fileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)。

这条更新语句做了如下的操作(按照图中的数字顺序):

  1. Page 1 在内存中,直接更新内存;
  2. Page 2 没有在内存中,就在内存的 change buffer 区域,记录下“我要往 Page 2 插入一行”这个信息
  3. 将上述两个动作记入 redo log 中(图中 3 和 4)。

做完上面这些,事务就可以完成了。所以,你会看到,执行这条更新语句的成本很低,就是写了两处内存,然后写了一处磁盘(两次操作合在一起写了一次磁盘),而且还是顺序写的。

现在要执行 select * from t where k in (k1, k2)。 如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读操作就与系统表空间(ibdata1)和 redo log(ib_log_fileX)无关了

1、 读 Page 1 的时候,直接从内存返回

2、要读 Page 2 的时候,需要把 Page 2 从磁盘读入内存中,然后应用 change buffer 里面的操作日志,生成一个正确的版本并返回结果。

可以看到,直到需要读 Page 2 的时候,这个数据页才会被读入内存。

redo log 主要节省的是随机写磁盘的 IO 消耗(转成顺序写),而 change buffer 主要节省的则是随机读磁盘的 IO 消耗。

10 MySQL为什么有时候会选错索引?

选择索引是优化器的工作, 而优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。

1、 索引的区分度 ,一个索引上不同的值越多,这个索引的区分度就越好。而一个索引上不同的值的个数,我们称之为“基数”(cardinality)。也就是说,这个基数越大,索引的区分度越好。 基数是通过采样统计的方法。

2、 索引统计信息不准确导致的问题,可以用 analyze table 来解决。 可以用来重新统计索引信息 。

索引选择异常和处理

1、 采用 force index 强行选择一个索引

2、 可以考虑修改语句,引导 MySQL 使用我们期望的索引

3、 新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引

11 怎么给字符串字段加索引?